
Workshop Command-Line Beginner II

Keyboard Shortcuts

• Ctrl-U : remove everything before the cursor
• Ctrl-K : remove everything after the cursor
• Ctrl-W : remove word before cursor
• Ctrl-Y : paste the last thing to be cut
• Ctrl-A: move cursor to beginning of line
• Ctrl-E : move cursor to end of line
• Ctrl-L: clear terminal screen
• Ctrl-R: reverse search

– search history for last command that corresponds with input
– useful if you want to quickly redo a previous command

Ctrl-R Example

$ echo foo
foo
$ echo bar
bar
(reverse-i-search)`e': echo bar`
(reverse-i-search)`echo f': echo foo

Stream operations

wc

Print the number of characters/words/lines

$ echo "a random sentence with words" | wc -m # number of characters
29
$ echo "a random sentence with words" | wc -w # number of words
5
$ echo "a random sentence with words" | wc -l # number of lines
1

head

Print the first n bytes or lines of the input

$ echo -e "1\n2\n3\n4\n5" | head -n 2 # -e option for \n as newline
only take the first two lines
1

1

2
$ echo -e "1\n2\n3\n4\n5" | head -n -2 # drops the last two lines
1
2
3
$ echo hello | head -c 3
hel
$ head -c 9 /dev/urandom | base64
some random characters

cut

Removes some sections from each line

$ echo "hello world" | cut -c 1-3
hel
$ echo "hello world" | cut -c 1,3
hl
$ echo "hello world" | cut -d " " -f 2
world

sort

Sort all lines

$ echo -e "c\nb\na"
c
b
a
$ echo -e "c\nb\na" | sort
a
b
c
$ echo -e "c\nb\na" | sort -r # reverse order
c
b
a
$ echo -e "2\n11 | sort
11
2
$ echo -e "2\n11 | sort -n # sort numbers
2
11

-h option will sort numbers in human readable format like 2M (for megabyte)
and 1G (for gigabyte)

2

$ du -hs * | sort -h
files and directories in current directory sorted on human readable size

uniq

Remove repeated lines, but only if they are right next to each other. So you
might have to sort first.

$ echo -e "a\nb\na"
a
b
a
$ echo -e "a\nb\na" | uniq
a
b
a
$ echo -e "a\nb\na" | sort | uniq
a
b

-c makes uniq count occurences of each unique value

$ echo -e "a\nb\na" | sort | uniq -c
2 a
1 b

Stream editing with sed

$ echo "hello world" | sed "s/hello/goodbye/"
goodbye world

Replace first occurence of hello with goodbye You can use regular expressions

$ echo "hello hello" | sed "s/hello/bye/g"
bye bye

g tells sed to replace every occurence

$ echo "hello Hello" | sed "s/hello/bye/gi"
bye bye

i tells sed to search case-insensitive

Editing files with sed

$ sed -e "/^#.*/d" -e "s/#.*//g" -i file-with-comments
file now has no comments

3

• /regex/d removes all lines that match
• ˆ means start of the line
• -e allows you to do multiple operations with one command
• -i tells sed to edit the file inplace

Command substitution

$(command)

This expression will be replaced by the output of the command.

$ touch $(hostname | sed "s/o/a/g")

Hostname print the current machine’s name, so this will create a file whith the
name of the current machine. But with the o’s replaced with a’s.

$ echo $(cat file-with-spaces-and-newlines)
a b c
$ echo "$(cat file-with-spaces-and-newlines)"
a b
c

If output contains whitespace, each word is interpreted as seperate argument.
Use quotes to preserve whitespace, everything between is interpreted as single
argument.

Command substitution as file

<(command)

Represents a fake file containing the command’s output.

Boring example:

$ cat <(echo hello)
hello

Cool example:

• curl prints content of website
• vim text editor, opens file

$ vim <(curl michiel.ulyssis.be)

Doesn’t work with nano :(

Finding files with find

find [path] [expression]

4

Prints files and directories. If path is omitted, the current working directory is
used.

Tests

• -type f or d for only files/directories respectively
• -name name

– can include wildcards: eg finding all txt files find -name "*.txt"
quotes are required, else bash will interpet * als wildcard

• -user name all files owned by a certain user
• many others, check the man page
• find gives alot of Permission denied errors when you are not allowed

to read certain files. Use find [path] [expression] 2> /dev/null to
filter those out

Making find do things

• -delete instead of print, delete the files

• -exec command {} \; execute command, with {} substituted with the
found file, for every found file.

$ mkdir somedir
$ find -name "*.txt" -exec cp {} somedir \;

Copies all txt files to the somedir directory.

$ find somedir -name "*.txt" -delete

Deletes all txt files in somedir.

Combining find and xargs

Recap xargs

Executes a given command with with arguments comming from stdin.

$ echo "world everyone" | xargs echo hello
hello world everyone
$ echo "world everyone" | xargs -n 1 echo hello
-n specifies how many args per command
hello world
hello everyone

• There are also other options like -l to execute the command for each line.
• -s for number of characters per command.

5

• Personal favorite: -P for how many processes executed in parallel for if the
command takes a while, to speed things up on SMP systems

Combining find and xargs

Little bit more flexible than -exec

touch filename\ with\ spaces.txt
$ find -name "*.txt" | xargs rm -f
rm: cannot remove './filename': No such file or directory
rm: cannot remove 'with': No such file or directory
rm: cannot remove 'spaces.txt': No such file or directory

Files with spaces might cause problems, seen as seperate argument The solution
is to seperate args with a null byte.

$ find -name "*.txt" -print0 | xargs -0 rm -f

Connectors

Return codes

When commands end, they return a return code (number). When the command
failed, that code will be non-zero. Zero means everything went OK.

&&

These are actually logic operators

$ command1 && command2

The second command will only be executed if the first succeeds.

||

$ command1 || command2

The second command will only be executed if the first one fails.

;

Always executes both, used to put multiple commands on one line.

6

Asynchronous jobs

$ command&

& behind the command will cause the command to be executed asynchronously.
During the commands execution, you will keep control over the shell and be able
to do multiple things at the same time.

$ sleep 5&
$ sleep 10& # you can do this on the same line
now we play the waiting game

It will report when it’s done, and it will keep printing to stdout. You can
use jobs to see what’s in the background, and fg to bring the last job to the
foreground and take control over it.

$ sleep 500&
$ jobs
[1]+ Running sleep 500 &
$ fg
#Ctrl-C, now it's closed

Ctrl-Z will suspend the current process and put it in the background, The
process’s progress will be paused though, if you want it to continue it’s work in
the background type bg.

$ sleep 5
Ctrl-Z
$ jobs
[1]+ Stopped sleep 5
$ bg
[1]+ sleep 5 &
[1]+ Done sleep 5

This is useful for putting editors in the background and you need to use the shell
but don’t want to close your editor just yet.

nano -z # z option allows suspending
type some stuff and do Ctrl-z
Use "fg" to return to nano.

[1]+ Stopped nano -z
fg
etc etc

Killing a job can also be done using kill %1 with 1 a job id reported by jobs.

disown will detach a job from the shell, you can than close the shell and the job
will keep running

7

Basics of bash scripting

Variables

Getting the content of a variable is done by putting a $ infront of it.

Setting variables:

$ a="some string" # no spaces between varname, = and content
$ echo "$a" # best use quotes
some string
$ username=$(whoami)
$ echo $username
username

Variable names can only be alphanumeric, so anything else will mean the rest of
the string

touch /tmp/$username/newfile # this works
touch /tmp/$username1 # wont work
touch /tmp/${username}1 # curly brackets fixes this

Your shell already have several variables set, these are called environment
variables.

$ echo $HOME
/home/username
$ echo $PWD # $(pwd) has the same result
/path/to/current/directory
$ echo $USER
username

You can request all of them using env

Some special variables

$ echo $RANDOM
random number

$ echo $? # return/exit code of previous command
0
$ false
$ echo $?
1

$ echo $$
pid of current shell

8

$ echo $!
pid of last job in background
sleep 5&
[1] 7012
$ echo $!
7012

Killing a command that has been running for to long

some_command="sleep 10000000000"
timeout=5
$some_command & sleep $timeout; kill -9 $! # use eval or not?
if command takes to long, kill it

for loops

for item in $list
do_something_with $item

for item in $list
do
multiple
commands
with $item

done

$list should be a list with each item seperated with whitespace (newlines work
too)

for char in a b c
do
echo character: $char # each char on a seperate

done

Don’t do the next example, when using quotes, the list will be one item, containing
the whitespace

for char in "a b c"
do
echo characters: $char # only one line

done

Example: getting contents of all files in current directory

for file in *; do
Contents of $file
echo "--------------"
cat $file
echo

9

done

Want all files starting with a dot too?

for file in $(ls -A); do
echo "Contents of $file"
echo "--------------"
cat $file
echo

done

Iterating over numbers

$ echo {1..9}
1 2 3 4 5 6 7 8 9

for i in {1..9}; do
touch file-$i

done

if statements

if command; then
do_this_command

else # can be omitted
do_other_command #

fi

If the command’s return code is 0 execute what is below the then, else, below
the else

The next example: get all files with a certain content in the current directory.

echo "some content" > some_file
for file in *; do
if grep "some content" &> /dev/null
then
echo $file

fi
done

test

Testing arbitrary things, like equality of strings, is done with test (= [[= [)
Check the man page for everything you can test.

if [[5 = 5]]; then
echo "Equal :)"

10

else
echo "Not equal :("

fi
Equal

if [[5 = 05]]; then
echo "Equal :)"

else
echo "Not equal :("

fi
Not Equal

if [[5 -eq 05]]; then
echo "Equal :)"

else
echo "Not equal :("

fi
Equal

for file in *; do
if [[-d $file]];then
echo $file is a directory

elif [[-f $file]];then
echo $file is a normal file

else
echo $file is something special

fi
done

11

	Workshop Command-Line Beginner II
	Keyboard Shortcuts
	Ctrl-R Example
	Stream operations
	wc
	head
	cut
	sort
	uniq

	Stream editing with sed
	Editing files with sed

	Command substitution
	Command substitution as file
	Finding files with find
	Tests
	Making find do things

	Combining find and xargs
	Recap xargs
	Combining find and xargs

	Connectors
	Return codes
	&&
	||
	;

	Asynchronous jobs

	Basics of bash scripting
	Variables
	Some special variables

	for loops
	if statements
	test

